
SPECIAL ISSUE

Evolutionary parallel and gradually distributed lateral tuning
of fuzzy rule-based systems

I. Robles • R. Alcalá • J. M. Benı́tez •

F. Herrera

Received: 16 June 2009 / Revised: 24 September 2009 / Accepted: 25 September 2009 / Published online: 22 October 2009

� Springer-Verlag 2009

Abstract The tuning of Fuzzy Rule-Based Systems is

often applied to improve their performance as a post-pro-

cessing stage once an initial set of fuzzy rules has been

extracted. This optimization problem can become a hard

one when the size of the considered system in terms of the

number of variables, rules and, particularly, data samples is

big. Distributed Genetic Algorithms are excellent optimi-

zation algorithms which exploit the nowadays available

parallel hardware (multicore microprocessors and clusters)

and could help to alleviate this growth in complexity. In

this work, we present a study on the use of the Distributed

Genetic Algorithms for the tuning of Fuzzy Rule-Based

Systems. To this end, we analyze the application of a

specific Gradual Distributed Real-Coded Genetic Algo-

rithm which employs eight subpopulations in a hypercube

topology and local parallelization at each subpopulation.

We tested our approach on nine real-world datasets of

different sizes and with different numbers of variables. The

empirical performance in solution quality and computing

time is assessed by comparing its results with those from a

highly effective sequential tuning algorithm. The results

show that the distributed approach achieves better results in

terms of quality and execution time as the complexity of

the problem grows.

Keywords Genetic fuzzy system �
Fuzzy rule-based systems � Distributed genetic algorithms �
Genetic tuning

1 Introduction

Fuzzy rule-based systems (FRBS) have become a wide

choice when addressing modeling and system identification

problems [1–4]. One of the most popular approaches for

the design of FRBSs is the hybridization between fuzzy

logic [5, 6] and Genetic Algorithms (GAs) [7, 8] leading to

the well-known Genetic Fuzzy Systems (GFSs) [9–11]. A

GFS is basically a fuzzy system augmented by a learning

process based on evolutionary computation, which includes

GAs, genetic programming, and evolutionary strategies,

among other evolutionary algorithms [12].

The predominant type of GFS is that focused on FRBSs,

since the automatic definition of FRBSs can be seen as an

optimization or search problem, and GAs are a well known

and widely used global search technique with the ability to

explore a large search space for suitable solutions only

requiring a performance measure. In addition to their ability

to find near optimal solutions in complex search spaces, the

generic code structure and independent performance fea-

tures of GAs make them suitable candidates to incorporate

a priori knowledge. In the case of FRBSs, this a priori

knowledge may be in the form of linguistic variables [13],

fuzzy membership function (MF) parameters, fuzzy rules,

number of rules, etc. These capabilities extended the use of

GAs in the development of a wide range of approaches for

designing FRBSs over the last few years.

In this framework, a widely-used technique to enhance

the performance of FRBSs is the genetic tuning of MFs

[14–19]. It consists of improving a previous definition of

I. Robles (&) � R. Alcalá � J. M. Benı́tez � F. Herrera

Dept. of Computer Sciences and Artificial Intelligence,

University of Granada, 18071 Granada, Spain

e-mail: ignaciorobles@gmail.com

R. Alcalá

e-mail: alcala@decsai.ugr.es

J. M. Benı́tez

e-mail: J.M.Benitez@decsai.ugr.es

F. Herrera

e-mail: herrera@decsai.ugr.es

123

Evol. Intel. (2009) 2:5–19

DOI 10.1007/s12065-009-0025-0

the Data Base (DB) once the Rule Base (RB) has been

obtained. The classic approaches to perform genetic tuning

[18, 19] consist of using a GA in order to refine the defi-

nition parameters that identify the MFs associated to the

linguistic terms comprising the initial DB.

Since the real aim of the genetic tuning process is to find

the best global configuration of the MFs and not only to

find independently specific ones, this optimization problem

can become a hard one when the size of the considered

system in terms of the number of variables, rules and,

particularly, data samples (typically used to guide the

search) is big. Moreover, the computing time consumed by

these approaches grows with the complexity of the search

space.

In order to deal with this complexity, Distributed

Genetic Algorithms (DGAs) [20–22] are found to be

excellent optimization algorithms for high dimensional

problems. They are able to take advantage of the parallel

hardware and software that has become very affordable and

broadly available nowadays. Clear examples in this line are

multicore processors and linux clusters [23–25]. This sit-

uation makes them perfect to deal with complex search

spaces.

In this work, we present a study on the use of the Dis-

tributed Genetic Algorithms for the tuning of FRBS from

two points of view: solution quality and computing time

improvements. To this end, we analyze the application of a

specific Gradually Distributed Real-Coded Genetic Algo-

rithm (GDRCGA) to perform an effective genetic tuning of

FRBSs [26]. This algorithm employs eight subpopulations

in a hypercube topology [27], including local paralleliza-

tion at each subpopulation, and makes use of a particular

linguistic rule representation model that was proposed in

[15] to perform a genetic lateral tuning of MFs. This

approach is based on the linguistic 2-tuples representation

[28] which simplifies the search space by considering only

one parameter per MF and, therefore, eases the derivation

of optimal models, particularly in complex or high-

dimensional problems.

We tested our approach on nine real-world problems

with a number of variables ranging from 2 to 21 and a

number of samples ranging from 495 to 8192. The

empirical performance in solution quality and computing

time has been assessed by comparing the results of the

distributed approach with those obtained from the spe-

cialized sequential algorithm, proposed in [15], to perform

a lateral tuning of the MFs. To assess the results obtained

by both algorithms, we have applied a nonparametric sta-

tistical test [29–32] for pair-wise comparisons. The results

show that the distributed approach achieves better results in

terms of quality and execution time as the complexity of

the problem grows.

This paper is structured as follows. In Sect. 2, DGAs are

presented and briefly discussed. In Sect. 3, the lateral

tuning of FRBSs problem is stated and an efficient

sequential specialized algorithm is reviewed. Section 4

describes the DGA used for FRBS tuning and explains how

the local parallelization is performed at each subpopula-

tion. An empirical evaluation of the distributed algorithm

on nine datasets is shown and discussed in Sect. 5. Some

conclusions and final remarks are given in Sect. 6. Finally,

Appendix describes the Wilcoxon signed-rank test used for

the experimental analysis.

2 Preliminaries: basic concepts about DGAs

The availability of extremely fast and low cost parallel

hardware in the last few years benefits the investigation on

new approaches to existing optimization algorithms. The

key of these new approaches is achieving gains not only in

time, which is somehow inherent to parallel computation,

but also gains in quality of the solutions found.

Generally, there are two ways to parallelize GAs. The

first way is by means of local parallelization: fitness eval-

uation of the individuals and, sometimes, the application of

the genetic operators are carried out in a parallel way [33,

34]. The second way is by means of global parallelization:

complete subpopulations evolve in parallel [27, 35–41] and

these algorithms are known as distributed genetic algo-

rithms (DGAs). While the first one is only achieving gains

in time, the second one is also able to improve the global

performance of the underlying algorithm, subsequently

achieving additional gains in the quality of the final solu-

tions. In fact, DGAs [20, 21] are excellent optimization

algorithms and have proven to be an interesting approach

when trying to cope with large scale problems and spe-

cifically when the classic approaches take too long to give a

proper solution.

In this section, our goal is to present an introductory

vision of the distributed models. Section 2.1 presents a

taxonomy of the state-of-the-art of DGAs. In Sect. 2.2, the

key elements to obtain a well-designed DGA are presented.

2.1 Taxonomy of distributed genetic algorithms

Several categorizations of DGAs can be found in the lit-

erature [20–22] according to a wide range of criteria. Some

of the most used categories when referring to DGAs are:

• According to the migration policy:

• Isolated: no migrations between subpopulations.

These DGAs are also known as Partitioned Genetic

Algorithms [41].

6 Evol. Intel. (2009) 2:5–19

123

• Synchronous: migrations between subpopulations

are synchronized, for example, they are carried out

at the same time [38, 41].

• Asynchronous: migrations are carried out when

some events occur, generally related to the activity

of subpopulations [37].

• According to the connection schema:

• Static schema: connections between subpopulations

are established at the start of the execution and they

are not modified.

• Dynamic schema: connection topology changes

dynamically along the execution of the algorithm.

Connection reconfigurations may occur depending

on the degree of evolution of the subpopulations.

• According to the homogeneity:

• Homogeneous: genetic operators are the same for

all subpopulations as well as parameters, fitness

function, coding scheme, etc. The vast majority of

DGAs proposed in the literature are homogeneous.

• Heterogeneous: subpopulations are all alike [36, 39,

40]. They can differ from the parameters used,

genetic operators, coding scheme, etc. One example

of these heterogeneous GAs are the Gradually

Distributed Genetic Algorithms where genetic

operators are applied with different intensities [27].

• According to the granularity:

• Coarse-grained parallelization: The population is

split into small subpopulations that are assigned to

different processors. Each subpopulation evolves

independently and simultaneously according to a

GA. Periodically, a migration operator exchanges

individuals among subpopulations, which gives

them some additional diversity.

• Fine-grained parallelization: The population is split

into a big number of small subpopulations. Gener-

ally only one subpopulation is assigned to each

processor. The selection and crossover operators are

applied considering adjacent individuals. For exam-

ple, each individual chooses its best neighbor for

crossover (Fig. 1) and the resulting individual

replaces the original one. When a single individual

is assigned to each processor, this type of algorithms

are known as Cellular Genetic Algorithms [35].

2.2 Design of distributed genetic algorithms

There are two classic problems [27] in DGAs. A main

drawback in DGAs is that the insertion of a new individual

coming from a different subpopulation may not be effec-

tive. The new individual could be highly incompatible with

the receiving subpopulation and therefore it might be

ignored or conquer the subpopulation. This probably hap-

pens when subpopulations involved are at different stages

of evolution.

The arrival of a highly evolved individual coming from

a strong subpopulation will result in a higher selection ratio

than for local individuals which are less evolved. In this

way, the subpopulation that sends the highly evolved

individual is imposing it to the receiving subpopulation.

This problem is known as the Conquest Problem [27].

Symmetrically, when a less evolved individual migrates

to a highly evolved subpopulation it will not be selected for

reproduction and therefore it will be abandoned. This

means a waste of computational and communication

efforts. This problem is known as the Non-effect Problem

[27].

Both problems could appear in DGAs since subpopu-

lations tend to converge at different speeds. For example, if

parameters used for the genetic operators are different,

convergence speed will be very different in subpopulations.

These problems can directly affect the global convergence

leading to non-optimal solutions and losing the effective-

ness of the distributed approach.

Subsequently, proposing a well-designed DGA is not a

trivial task due to the existence of several factors that can

have an influence over the exploration/exploitation balance

of the algorithm. There are several elements to consider

when designing DGAs:

1. Topology: structure of the distributed algorithm which

defines relationships between subpopulations and

individuals [38, 41–43].

2. Migration rate (MRATE): amount of individuals to be

exchanged between subpopulations.

3. Migration frequency (MFREQ): number of generations

between two consecutive migrations.

Fig. 1 Cellular genetic algorithm: a extreme case of fine-grained

parallelization

Evol. Intel. (2009) 2:5–19 7

123

4. Selection strategy: generally there are two ways of

selecting the genetic material to be copied. The first

way is randomly selecting an individual from the

current subpopulation. The second way consists on

selecting the individual with the best fitness in every

subpopulation to be copied to another. The last one

would lead into a more direct evolution because

individuals would not have traces of less adapted

individuals. The main disadvantage of selecting the

best individual is that it could lead into premature

convergence [44].

5. Replacement strategy: different replacement strategies

can be considered, as replacing the worst individuals

with the ones received due to migrations, as replacing

an individual randomly choosen, etc.

6. Replication of emigrants: should individuals be

moved, or copied among subpopulations? Exchanging

copies of individuals could lead to a highly evolved

individuals dominating several less evolved subpopu-

lations [44].

All these parameters have a deep interaction among

them and should be carefully determined since a poor

choice in one of them can have a strong impact on the

global performance of the algorithm. For instance,

choosing an extremely high MFREQ can lead to an

excessive communication load of the network and the

effect of the migrated individuals could be almost

imperceptible. Besides, these parameters should be fixed

having in mind the hardware that will be used to execute

the algorithm: depending on the network it might be

better migrating more individuals less frequently than the

other way around.

Finally, the DGA schema that comes from the consid-

eration of spatial separation of subpopulations is presented

in Table 1.

3 Genetic tuning of FRBSs: a particular case on the

effective lateral tuning of MFs

With the aim of making an FRBS perform better, some

approaches try to improve the preliminary DB definition or

the inference engine parameters once the RB has been

derived [9–11]. In order to do so, a tuning process con-

sidering the whole KB obtained (the preliminary DB and

the derived RB) is used a posteriori to adjust the MFs or the

inference engine parameters. A graphical representation of

the tuning process is shown in Fig. 2.

Among the different possibilities to perform the tuning,

one of the most widely-used approaches to enhance the

performance of FRBSs is the one focused on the DB def-

inition, usually named tuning of MFs, or DB tuning [15,

17–19, 45]. In [19], we can find a first and classic proposal

on the tuning of MFs. In this case, the tuning methods

refine the parameters that identify the MFs associated to the

labels comprising the DB. Classically, due to the wide use

of the triangular-shaped MFs, the tuning methods [10, 17–

19] refine the three definition parameters that identify these

kinds of MFs (Fig. 3).

Since the parameters of the MF are interdependent

among themselves, in the case of large scale problems, the

tuning process becomes an optimization problem on a very

complex search space. This, of course, affects the good

performance of the optimization methods. A good alter-

native to solve this problem is the lateral tuning of MFs

[15]. This approach makes use of the linguistic 2-tuples

representation [28] which simplifies the search space and,

therefore, eases the derivation of optimal models, particu-

larly in complex or high-dimensional problems.

In order to better handle the complex search space that

the tuning of MFs represents, in this work, we analyze the

use of the DGAs combined with a local parallelization

when performing a lateral tuning of the MFs.

In Sect. 3.1, we describe the efficient lateral tuning of

FRBSs. Next, the sequential evolutionary algorithm pro-

posed in [15] to perform the lateral tuning of FRBS is

briefly described in Sect. 3.2.

3.1 Rules with the linguistic 2-tuples representation

In [15], a new procedure for FRBSs tuning was proposed. It

is based on the linguistic 2-tuples representation scheme

introduced in [28], which allows the lateral displacement of

the support of a label and maintains the interpretability at a

good level. This proposal introduces a new model for rule

representation based on the concept of symbolic translation

[28]. The symbolic translation of a label is a number in

(-0.5, 0.5) which expresses its displacement between two

adjacent lateral labels (Fig. 4a). Let us consider a generic

linguistic fuzzy partition S = {s0,…, sL-1 } (with L

Table 1 DGA schema

1. Generate a random population, P

2. Divide P into m subpopulations: SPi, i = 1, …, m

3. Define a topology for SP1, …, SPm

4. For i = 1 to m do

4.1. Apply in parallel during MFREQ generations the genetic

operators

4.2. Send in parallel MRATE chromosomes to neighbour

subpopulations

4.3. Receive in parallel chromosomes from neighbour

subpopulations

5. If stopping criteria is not meet then go back to step 4

8 Evol. Intel. (2009) 2:5–19

123

representing the number of labels). Formally, we represent

the symbolic translation of a label si in S by means of the

2-tuple notation,

ðsi; aiÞ; si 2 S; ai 2 ½�0:5; 0:5Þ:

The symbolic translation of a label involves the lateral

variation of its associated MF. Figure 4 shows the sym-

bolic translation of a label represented by the 2-tuple (s2,

-0.3) together with the associated lateral variation.

In the context of FRBSs, the linguistic 2-tuples could be

used to represent the MFs used in the linguistic rules. This

way to work, introduces a new model for rule representa-

tion that allows the tuning of the MFs by learning their

respective lateral displacements. Next, we present this

approach by considering a simple control problem.

Let us consider a control problem with two input vari-

ables (X1, X2), one output variable (Y) and an initial DB

defined by experts to determine the MFs for the following

labels:

• X1: Error ? {Negative, Zero, Positive}

• X2: rError ? {Negative, Zero, Positive}

• Y: Power ? {Low, Medium, High}

Based on this DB definition, examples of classic and

linguistic 2-tuples represented rules are:

• Classic Rule:

Ri: If the Error is Zero and the rError is Positive Then

the Power is High.

• Rule with 2-Tuples Representation:

Ri: If the Error is (Zero,0.3) and the rError is

(Positive, -0.2) Then the Power is (High, -0.1).

With respect to the classic tuning, usually considering

three parameters in the case of triangular MFs, this way to

work involves a reduction of the search space that eases a

fast derivation of optimal models, improving the conver-

gence speed and avoiding the necessity of a large number

of evaluations.

In [15], two different rule representation approaches

have been proposed, a global approach and a local

approach. The global approach tries to obtain more inter-

pretable models, while the local approach tries to obtain

more accurate ones. In our case, tuning is applied at the

level of linguistic partitions (global approach). By con-

sidering this approach, the label si
v of a variable v is

translated with the same ai
v value in all the rules where it is

used, i.e., a global collection of 2-tuples is used in all the

fuzzy rules.

Notice that from the parameters ai
v applied to each label

we could obtain the equivalent triangular MFs. Thus, an

FRBS based on linguistic 2-tuples can be represented as a

classic Mamdani FRBS [46]. Refer to [15] for further

details on this approach.

3.2 Lateral tuning of FRBSs

In [15], two effective sequential GAs were respectively

proposed to perform a lateral tuning, or to combine it with

a rule selection, on previously obtained FRBSs. In this

paper, we will focus on the first one, only performing

tuning, as a way to analyze the aplicability of DGAs for the

tuning of FRBSs. A short description of this algorithm is

given below (see ref. [15] for a detailed description).

As the basis optimization procedure the genetic model

of CHC [47] was used. The evolutionary model of CHC

makes use of a ‘‘Population-based Selection’’ approach. N

parents and their corresponding offsprings are combined to

select the best N individuals to compose the next popula-

tion. The CHC approach makes use of an incest prevention

mechanism and a restarting process to provoke diversity in

the population, instead of the well known mutation

operator.

This incest prevention mechanism is considered in order

to apply the crossover operator, i.e., two parents are cros-

sed if their hamming distance divided by 2 is higher than a

predetermined threshold, T. Since a real coding scheme is

considered, each gene is transformed by considering a Gray

Code with a fixed number of bits per gene (BITSGENE)

determined by the system expert. In our case, the threshold

value is initialized as:

Fig. 2 Genetic tuning process

T T'

a a' b'b c' c

Fig. 3 Tuning by changing the basic MF parameters

Evol. Intel. (2009) 2:5–19 9

123

T ¼ ð#GenesCT � BITSGENEÞ=4:0:

Following the original CHC scheme, T is decreased by

one when the population does not change in one

generation. In order to avoid very slow convergence, T is

also decreased by one when no improvement is achieved

with respect to the best chromosome of the previous

generation. The algorithm restarts when T is below zero. A

scheme of the evolutionary model of CHC is shown in

Fig. 5.

In the following, the components used to design the

evolutionary tuning process are explained. They are: DB

codification and initial gene pool, fitness function, cross-

over operator and restarting process.

3.2.1 Data base codification and initial population

A real coding scheme is considered, i.e., the real parame-

ters are the GA representation units (genes). Let us con-

sider n system variables and a fixed number of labels per

variable L. Then, a chromosome has the following form

(where each gene is associated to the tuning value of the

corresponding label),

ða1
1; . . .; aL

1 ; a
1
2; . . .; aL

2 ; . . .; a1
n; . . .; aL

nÞ:

To make use of the available information, the initial FRBS

obtained from an automatic fuzzy rule learning method is

included in the population as an initial solution. To do so,

the initial pool is obtained with the first individual having

all genes with value ‘0.0’, and the remaining individuals

generated at random in (-0.5, 0.5).

3.2.2 Fitness function

To evaluate a given chromosome the well-known Mean

Square Error (MSE) is used:

MSE ¼ 1

2 � N
XN

l¼1

ðFðxlÞ � ylÞ2;

with N being the data set size, F(xl) being the output

obtained from the FRBS decoded from the said chromo-

some when the l-th example is considered and yl being the

known desired output.

3.2.3 Crossover operator

The crossover operator is based on the the concept of

environments. These kinds of operators show a good

behavior in real coding. Particularly, the BLX-a operator

[48] is considered.

This operator allows tuning the degree of exploration

and exploitation of the crossover in an easy way.

BLX-a crossover works as follows: let us assume that

X = (x1,…, xg) and Y = (y1,…, yg) with xi; yi 2 ðai; biÞ ¼
½�0:5; 0:5Þ � Rði ¼ 1; . . .; gÞ are the two real-coded chro-

mosomes that are going to be crossed. Using the BLX-a
crossover, one descendant Z = (z1,…, zg) is obtained,

where zi is randomly (uniformly) generated within the

interval [li, ui], with li = max{ai, cmin - A}, ui = min{bi,

cmax ? A}, cmin = min{xi, yi}, cmax = max{xi, yi} and

A = (cmax - cmin)�a.

Figure 6 shows how the BLX-a operator works at dif-

ferent stages of the evolution process (convergence to a

common point) with a = 0.5 as an example of the behavior

of this operator. Even though that a change on the alpha

value promotes different speeds to change from exploration

to exploitation, the shown stages are present in the evolu-

tion for any value of alpha.

(a) (b)

Fig. 4 Symbolic translation of

a label and lateral displacement

of the associated MF. a
Symbolic translation of a label;

b lateral displacement of a

membership function

Initialize population
and THRESHOLD

Crossover of
N parents

Evaluation of the
New individuals

THRESHOLD < 0.0Restart the population
and THRESHOLD

yes

no

Selection of the
best N individuals

If NO new individuals,
decrement THRESHOLD

Fig. 5 Scheme of CHC

10 Evol. Intel. (2009) 2:5–19

123

3.2.4 Restarting process

To get away from local optima, this algorithm uses a restart

approach [47]. In this case, the best chromosome is

maintained and the remaining are generated at random

within the corresponding variation intervals (-0.5, 0.5). It

follows the principles of CHC [47], performing the restart

procedure when the threshold T is below zero.

4 A distributed genetic algorithm for the lateral tuning

of FRBSs

One of the problems when performing tuning with complex

data sets is the complexity of the search space. Sometimes

even an advanced GA can not deal with the complex search

space in terms of time and quality of the results.

GDRCGAs are a kind of heterogeneous DGAs based on

real coding where subpopulations apply genetic operators

in different levels of exploitation/exploration. This heter-

ogeneous application of genetic operators produce a par-

allel multiresolution which allows a wide exploration of

the search space and effective local precision. Due to ap-

propiate connections between subpopulations in order to

gradually exploit multiresolution, these algorithms achieve

refinement or expansion of the best emerging zones of the

search space.

In order to analyze how DGAs can help the tuning

problem, we have selected an efficient GDRCGA [27], that

keeps a good balance between exploration and exploitation

of the search space. additionally, we have combined this

GDRCGA (for global parallelization) with a local parall-

elization to perform fitness evaluations in a parallel way at

each subpopulation. As we said before, we apply this

algorithm, namely GDRCGA, to perform a lateral tuning of

previously obtained FRBSs.

This section is organized as follows. Section 4.1 sets out

the main components of the DGA such as topology,

migrations scheme, etc. Next, Sect. 4.2 explains the

common components of the different subpopulations such

as crossover operator, DB codification, etc.

4.1 Main components of the DGA

The GDRCGA [27] used for FRBS tuning employs 8

subpopulations in a hypercube topology as seen in Fig. 7.

In this topology two important groups of subpopulations

can be clearly identified:

1. Front side: this side of the hypercube is oriented to

explore the search space. In this side, four subpopu-

lations, E1,…, E4, apply genetic operators adapted for

exploration in a clockwise increasing degree.

2. Back side: subpopulations in the back side of the

hypercube, e1,…, e4, apply exploitation oriented

genetic operators in a clockwise increasing degree.

One of the key elements of DGAs is the migration

policy of individuals between subpopulations. In this par-

ticular model, an immigration process [49] is achieved

since the best chromosome in every subpopulation aban-

dons it and moves to an immediate neighbor. Due to this

immigration policy, three different immigration move-

ments can be identified depending on the subpopulations

involved:

1. Refinement migrations: individuals in the back side

move clockwise to the immediate neighbor, i.e. from

e2 to e3. Chromosomes in the front side move

counterclock from a more exploratory subpopulation

to a less exploratory oriented one.

2. Expansion migrations: individuals in the back side

move counterclock to the immediate neighbor and

chromosomes in the front side move clockwise from a

less exploratory subpopulation to a more exploratory

oriented one, i.e. from E4 to E1.

3. Mixed migrations: subpopulations from one side of the

hypercube exchange their best individual with the

Fig. 6 Different cases/stages of the application of the BLX-a
crossover operator, where a = 0.5

E1

E2E3

E4

e4 e1

e3 e2

Back side (Exploitation)

Front side (Exploration)

+

+ -

-

Fig. 7 Hypercube topology for GDRCGA

Evol. Intel. (2009) 2:5–19 11

123

counterpart subpopulation in the other side: inter-

change between Ei and ei, i = 1…4.

Figure 8 shows the three different migration movements

described above.

As stated in [27], the frequency in which migration

movements occur is crucial to avoid the classic withdraws

of DGAs: the conquest and noneffect problems. In order to

reduce the negative effect of these problems, immigrants

stay in the receiving subpopulations for a brief number of

generations. Besides, a global restarting operator is used to

avoid stagnation of the search process. This restart operator

randomly reinitializes all subpopulations if non-significant

improvement of the best element is achieved for a number

of generations. Also an elitism strategy is used in order to

keep the best adapted individual of every subpopulation.

4.2 Common components of individual subpopulations

The main component used in the different subpopulations

of the distributed model are:

• DB codification and initial subpopulations: the coding

scheme used to represent the displacement parameters

is the same one described in Sect. 3.2.1 for the

specialized sequential algorithm. Each subpopulation

is also initialized in the same way explained in

Sect. 3.2.1, i.e., by including the initial FRBS as the

first individual in each subpopulation and the remaining

individuals generated at random.

• Crossover operator: the crossover operator used, BLX-

a, is the same that was used in the specialized

sequential algorithm and is described in Sect. 3.2.3.

As stated before, distinct parameter values are used

between subpopulations in order to achieve different

degrees of exploitation/exploration. The values used for

each subpopulation are shown in Table 2.

In the absence of selection pressure, values of a, which

are a\ 0.5 make the subpopulations converge towards

values in the center of their ranges, producing low diversity

levels in the population and inducing a possible premature

convergence towards non-optimal solutions. Only when

a = 0.5, there is a balanced relationship reached between

convergence (exploitation) and divergence (exploration).

In this case, the probability that a gene will lie in the

exploration interval is equal to the probability that it will

lie in an exploration interval [48].

• Local restarting process: In each subpopulation the

same restarting approach explained in Sect. 3.2.4 is

used, i.e., the best chromosome is maintained and the

remaining ones are generated at random within the

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

E1

E2E3

E4

e4 e1

e3 e2

Refinement migrations Expansion migrations

Mixed migrations

Fig. 8 Three different

migration movements for the

GDRCGA

12 Evol. Intel. (2009) 2:5–19

123

corresponding variation intervals (-0.5, 0.5) when each

particular threshold T is below zero. Therefore, each

subpopulation has its own local restating operator.

• Local parallelization for fitness evaluation: with the aim

of improving execution times for the distributed

algorithm, we use several threads to perform the fitness

evaluation of individuals within each subpopulation.

This multi-thread approach is quite straightforward:

every subpopulation is divided into a number of groups

and every group is evaluated using a different thread.

Generally, an excellent number of groups is the number

of cores present in every processor of the hardware

architecture.

5 Experiments

To evaluate the distributed approach, we have addressed

nine real-world problems with different complexities (dif-

ferent numbers of variables and available data). Table 3

summarizes the main characteristics of the nine datasets

and shows the link to the KEEL project webpage [50] from

which they can be downloaded. This section is organized as

follows:

• First, we describe the experimental set-up in Sect. 5.1.

• Second, we compare the different approaches, sequen-

tial and distributed in terms of performance, in Sect.

5.2.

• Third, we study the convergence and trend of the

compared algorithms in Sect. 5.3.

• Finally, a speed-up analysis is performed in order to

show the computational gains obtained by the distrib-

uted approach in Sect. 5.4.

5.1 Experimental set-up

We applied the algorithms described in the previous sec-

tions both the sequential and distributed approaches,

namely, CHC and GDRCGA. Table 4 summarizes the

configurations of the algorithms used in the experiments.

In all the cases, the well-known ad-hoc data-driven

learning algorithm of Wang and Mendel [51] (WM-

Method) is applied to obtain an initial set of candidate

linguistic rules. The initial linguistic partitions are com-

prised of five linguistic terms in the case of datasets with

less than 9 variables and three linguistic terms in the

remaining ones. We consider strong fuzzy partitions of

triangular-shaped MFs. Once the initial RB is generated,

the different algorithms can be applied. The performance

of the initial FRBSs obtained by WM-Method are shown in

Table 5 (initial results taken as a reference).

We adopted a 5-fold cross-validation model, i.e., we

randomly split the data set into 5 folds, each containing the

20% of the examples of the data set, and used four folds for

training and one for testing. For each dataset we compute

the mean values of MSE in training and test sets.

In order To assess whether significant differences exist

among results, we adopt statistical analysis and in par-

ticular non-parametric tests [29–32], according to the

recommendations made in [29, 31], where a set of simple,

safe and robust non-parametric tests for statistical com-

parisons of classifiers have been introduced. In particular,

we use the Wilcoxon signed-rank test [52, 53] for pair-

wise comparison of the two algorithms. A detailed

description of this test is included in Appendix. To per-

form the test we use a level of confidence of a = 0.1.

This statistical test is based on computing the differences

on two sample means (typically, mean test errors obtained

by a pair of different algorithms on different data sets). In

the classification framework these differences are well

defined since these errors are in the same domain. In the

regression framework, to have well defined differences,

we propose to adopt a normalised difference DIFF,

defined as:

DIFF ¼ MSEtstðCHCÞ �MSEtstðGDRCGAÞ
MSEtst(CHC)

: ð1Þ

This difference expresses the improvement percentage of

the distributed algorithm over the sequential one.

Table 2 Values of a for each subpopulation

Exploitation

? / -

Exploration

- ? ?

e4 e3 e2 e1 E1 E2 E3 E4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Table 3 Data sets considered for the experimental study

Datasets Name Variables Examples

Electrical length EL 2 495

Electrical maintenance EM 4 1,056

Abalone ABA 8 4,177

Stock ST 9 950

Weather-Izmir WI 9 1,461

Weather-Ankara WA 9 1,609

Treasury TR 15 1,049

Mortgage MOR 15 1,049

Computer activity CA 21 8,192

Available at http://sci2s.ugr.es/keel/datasets.php

Evol. Intel. (2009) 2:5–19 13

123

http://sci2s.ugr.es/keel/datasets.php

5.2 Performance analysis

Table 6 shows the average results corresponding to the

solutions obtained for the nine datasets and the two algo-

rithms compared. In the table, MSEtra, MSEtst and DIFF

denote, respectively, the MSE on the training set, the MSE

on the test set and the improvement value defined in Eq. 1.

We observe that the distributed algorithm GDRCGA

outperforms the sequential algorithm in eight out of the

nine datasets in both training and test. To assess whether

we can conclude that GDRCGA statistically outperforms

CHC in terms of MSEs, we apply the Wilcoxon signed-

rank test to the results achieved by these algorithms.

Table 7 shows the results of the application of the Wilco-

xon test on the test set. Here, R? and R- denote, respec-

tively, the sum of the ranks corresponding to CHC and

GDRCGA. The null hypothesis associated with the Wil-

coxon signed-rank test is rejected in favour of GDRCGA

due to the differences between R? and R-. Thus, we can

conclude that the results achieved by these algorithms are

statistically different on the test set.

5.3 Convergence study and trend of both algorithms

The observation of the evolution of the MSE is also an

interesting factor to take into account. Two different data

sets have been choosen in order to study the evolution of

the MSE: Electrical Maintenance and Treasury. These two

data sets were choosen because of their different com-

plexity: Treasury data set is far more complex than Elec-

trical Maintenance.

Figure 9 shows the convergence of both algorithms in

both problems. Due to the distributed nature of the algo-

rithm and consequently the spatial separation implied, in

the more complex problem, it needs more evaluations to

converge than the sequential algorithm. It always presents

the same behaviour in comparision to the sequential

approach: with a small number of evaluations it yields a

higher error than the sequential one in the most complex

problems, but when the number of evaluations is high it

gives solutions with a better quality.

As it has been stated, the distributed approach needs

more iterations to achieve convergence for complex data

sets. This situation can be observed in Figure 9, right side:

GDRCGA achieves better MSE values when the search

process has consumed almost two thirds of the number of

evaluations. On the other hand, when dealing with less

complex data sets like Electrical Maintenance (Fig. 9, left

side), the distributed approach quickly achieves better MSE

values from almost the begining of the search process and

keeps gaining distance from the sequential CHC algorithm.

In fact, GDRCGA begins achieving better MSE values

shortly after the search process has consumed less than half

of the number of evaluations available. These two situa-

tions can be also verified in Table 6.

Besides studying the evolution of the MSE in training

(convergence), it is also interesting to analyze the effects

that it produces on the MSE in test regarding the same data

sets. Figure 10 shows the MSE in test of Treasury and

Electrical Maintenance datasets. Again, we can observe

that the distributed approach needs more evaluations to

outperform the sequential algorithm in the more complex

problem (Fig. 10, right side) while better results are

obtained practically from the beginning in the simpler one

(Fig. 10, left side). However, two interesting characteristics

can be highlighted. Firstly, the evolution in the test error

shown by GDRCGA seems more stable in both problems.

Secondly, GDRCGA shows practically the same trend in

training and test in both datasets, while the sequential

approach worsen the test error once the half of the evalu-

ations are consumed in the more complex dataset (over-

fitting). Actually, the delay in convergence helps it to

escape from overfitting and locate better optima. Both

characteristics are quite recommendable in the fuzzy

modeling framework.

Table 4 Algorithm configurations used in the experiments

Parameter CHC GDRCGA

Evolution approach CHC CHC

Elitism Yes Yes

Total evaluations 100,000 100,000

Crossover operator BLX -0.5 Gradual BLX -a

Restart Yes Yes

Topology Single population Hypercube

Migration frequency – 5 Generations

Size of population

(CHC)/sub-populations

(GDRCGA)

50 50

Table 5 Initial results obtained by WM-method

Dataset MSEtra MSEtst

EL 2.347E?05 2.419E?05

EM 5.761E?04 5.793E?04

ABA 8.407E?00 8.422E?00

ST 9.074E?00 9.042E?00

WI 6.944E?00 7.368E?00

WA 1.606E?01 1.639E?01

TR 1.636E?00 1.631E?00

MOR 9.850E-01 9.730E-01

CA 4.038E?01 4.096E?01

14 Evol. Intel. (2009) 2:5–19

123

Table 6 Experimental results obtained by CHC and GDRCGA

Data set Evaluations CHC GDRCGA DIFF

MSEtra MSEtst MSEtra MSEtst

EL 25,000 1.672E?05 1.932E?05 1.665E?05 1.910E?05 1.156E-02

50,000 1.672E?05 1.930E?05 1.593E?05 1.867E?05 3.268E-02

100,000 1.672E?05 1.928E?05 1.332E?05 1.824E?05 5.375E-02

EM 25,000 2.482E?04 2.807E?04 2.381E?04 2.729E?04 2.777E-02

50,000 2.464E?04 2.796E?04 2.270E?04 2.703E?04 3.328E-02

100,000 2.394E?04 2.749E?04 2.258E?04 2.682E?04 2.447E-02

ABA 25,000 2.616E?00 2.802E?00 2.600E?00 2.782E?00 7.050E-03

50,000 2.616E?00 2.802E?00 2.568E?00 2.747E?00 1.961E-02

100,000 2.616E?00 2.802E?00 2.444E?00 2.736E?00 2.349E-02

ST 25,000 4.600E-01 6.332E-01 4.592E-01 6.352E-01 -3.209E-03

50,000 4.549E-01 6.307E-01 4.347E-01 6.292E-01 2.424E-03

100,000 4.548E-01 6.291E-01 4.289E-01 6.276E-01 2.402E-03

WI 25,000 1.643E?00 1.868E?00 1.679E?00 1.883E?00 -8.030E-03

50,000 1.635E?00 1.863E?00 1.599E?00 1.854E?00 4.803E-03

100,000 1.444E?00 1.851E?00 1.393E?00 1.702E?00 8.059E-02

WA 25,000 2.720E?00 3.531E?00 2.621E?00 3.627E?00 -2.712E-02

50,000 2.683E?00 3.429E?00 2.578E?00 3.012E?00 1.217E-01

100,000 2.621E?00 3.367E?00 2.445E?00 3.166E?00 5.973E-02

TR 25,000 1.342E-01 1.514E-01 1.431E-01 1.662E-01 -9.750E-02

50,000 1.218E-01 1.374E-01 1.162E-01 1.321E-01 3.832E-02

100,000 1.147E-01 1.304E-01 1.106E-01 1.224E-01 6.183E-02

MOR 25,000 1.070E-01 1.207E-01 1.292E-01 1.341E-01 -1.113E-01

50,000 1.057E-01 1.198E-01 1.218E-01 1.324E-01 -1.052E-01

100,000 1.029E-01 1.177E-01 1.152E-01 1.287E-01 -9.358E-02

CA 25,000 4.528E?00 5.534E?00 4.562E?00 5.712E?00 -3.214E-02

50,000 4.515E?00 5.673E?00 4.518E?00 5.692E?00 -3.426E-03

100,000 4.505E?00 5.662E?00 4.419E?00 5.595E?00 1.179E-02

Table 7 Wilcoxon test to compare CHC with GDRCGA

Comparison R? R- Hypothesis (a = 0.1) p-value

CHC versus GDRCGA (100000 evs.) 8.0 37.0 Rejected 0.086

R? corresponds to CHC and R- to GDRCGA

Fig. 9 Evolution of the MSE in

training (convergence):

electrical maintenance and

treasury datasets

Evol. Intel. (2009) 2:5–19 15

123

5.4 Speed-up study

Generally, when comparing a distributed or parallel

approach with the corresponding sequential algorithm an

interesting measure is the execution time gain ratio, also

known as speed-up. This ratio could be defined as follows:

Sup ¼
Tseq

Tdist

; ð2Þ

where Tseq is the time spent by the sequential algorithm and

Tdist is the execution time of the distributed approach. This

measure expresses how much faster the distributed

approach is compared to the sequential one. The higher the

value of Sup, the better our approach performs. To compute

the mean speed-up of the distributed algorithm, we have

considered the average execution times for each dataset

and algorithm. We used a cluster with 8 nodes, each one

with 8 GB RAM and an Intel Core 2 Quad Q9300 pro-

cessor at 2.5 GHz. As said, individuals within each sub-

population were evaluated in parallel, four individuals at a

time, taking advantage of the four cores present in every

processor of the cluster.

Table 8 shows mean speed-up values obtained for the

nine data sets along with the number of variables, the

number of examples and the number of variables multi-

plied by the number of examples (VE). The data sets are

sorted in increasing speed-up gains order. In the less

complex data sets the speed-up obtained is substantially

lower because the sequential algorithm is very fast and

the time spent in communications of the distributed

approach slows it down in comparison. As the complexity

of the data set increases the speed-up also increases,

showing that the distributed approach in the most com-

plex data set is more than five and a half times faster than

the sequential algorithm. The distributed algorithm takes

longer than the sequential algorithm when dealing with

small size data sets mainly due to two reasons: interpro-

cess communication in the distributed approach implies

additional execution time which can not be parallelized

and the specialized algorithm is optimized for small size

data sets where the search space is not too complex. The

distributed algorithm takes adventage of the slow indi-

vidual evaluation performed by the sequential algorithm

in complex search spaces which makes it suitable for

dealing with problems where fitness evaluation is com-

putationally difficult.

Figure 11 represents the trend of the values shown in

Table 7 for the number of variables, examples and VE. It

can be seen how the speed-up is not independently related

to the number of variables or examples but it is related to

both together.

6 Concluding remarks

In this paper we have presented a study on the use of the

DGAs for the lateral tuning of FRBSs. To this end, we have

analyzed the performance of a specific GDRCGA

employing 8 subpopulations in a hypercube topology [26]

together with a local parallelization of the fitness evalua-

tion at each subpopulation. This algorithm has been com-

pared with the specialized GA presented in [15] to perform

the lateral tuning of FRBSs.

Fig. 10 Effects on the MSE in

test: electrical maintenance and

Treasury data sets

Table 8 Speed-up values obtained in increasing speed-up gains order

Datasets Variables Examples VE Speed-up

EL 2 495 990 0.49

EM 4 1,056 4,224 0.51

ST 9 950 8,550 0.63

WI 9 1,461 13,149 1.07

WA 9 1,609 14,481 1.12

TR 15 1,049 15,735 1.81

MOR 15 1,049 15,735 1.92

ABA 8 4,177 33,416 2.13

CA 21 8,192 172,032 5.61

16 Evol. Intel. (2009) 2:5–19

123

From the empirical results obtained, we can conclude

that as the complexity of the problem grows, the distributed

approach outperforms the specialized sequential algorithm.

Moreover, the distributed procedure makes effective use of

the wall time in relation to the computing times required by

the sequential algorithm. Also, when dealing with complex

search spaces, the distributed approach is able to converge

to better quality solutions than the sequential algorithm.

This behaviour makes the distributed tuning algorithm very

useful when dealing with large scale problems where the

complexity of the search space is high.

Since execution time and quality of the results are two

properties always in conflict somehow, the distributed

approach could be graduated in order to achieve faster

execution times with a small cost in quality and vice versa.

Acknowledgments This work was supported by the Spanish Min-

istry of Science and Innovation under grant TIN2005-08386-C05-01.

Authors would like the thank the UGRGrid team from the University

of Granada for their continuous support.

Appendix: Wilcoxon’s Signed-Rank Test

The Wilcoxon signed-rank test is a pair-wise test that aims

to detect significant differences between two sample

means: it is the analogous to the paired t-test in non-

parametric statistical procedures. If these means refer to the

outputs of two algorithms, then the test practically assesses

the reciprocal behavior of the two algorithms [52, 53]. Let

di be the difference between the performance scores of the

two algorithms on the i-th out of Nds datasets. The differ-

ences are ranked according to their absolute values; aver-

age ranks are assigned in case of ties. Let R? be the sum of

ranks for the datasets on which the first algorithm outper-

formed the second, and R- the sum of ranks for the con-

trary outcome. Ranks of di = 0 are split evenly among the

sums; if there is an odd number of them, one is ignored:

Rþ ¼
X

di [0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ;

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ:

Let T be the smaller of the sums, T = min(R?, R-). If T

is less than, or equal to, the value of the distribution of

Wilcoxon for Nds degrees of freedom (Table B.12 in [54]),

the null hypothesis of equality of means is rejected.

The Wilcoxon signed-rank test is more sensible than the

t-test. It assumes commensurability of differences, but only

qualitatively: greater differences still count for more,

which is probably desired, but the absolute magnitudes are

ignored. From the statistical point of view, the test is safer

since it does not assume normal distributions. Also, the

outliers (exceptionally good/bad performances on a few

datasets) have less effect on the Wilcoxon test than on the

t-test. The Wilcoxon test assumes continuous differences

di, therefore they should not be rounded to one or two

Fig. 11 Influence of the

number of examples, variables

and VE on the speed-up

Evol. Intel. (2009) 2:5–19 17

123

decimals, since this would decrease the test power due to a

high number of ties.

When the assumptions of the paired t-test are met, the

Wilcoxon signed-rank test is less powerful than the paired

t-test. On the other hand, when the assumptions are vio-

lated, the Wilcoxon test can be even more powerful than

the t-test. This allows us to apply it to the means obtained

by the algorithms in each dataset, without any assumption

about the distribution of the obtained results.

References

1. Driankow D, Hellendoorn H, Reinfrank M (1993) An introduc-

tion to fuzzy control. Springer, Berlin

2. Ishibuchi H, Nakashima T, Nii M (2004) Classification and

modeling with linguistic information granules: advances

approaches to linguistic data mining. Springer, Berlin

3. Palm R, Driankov D, Hellendoorn (1997) Model based fuzzy

control. Springer, Berlin

4. Pedrycz W (1996) Fuzzy modelling: paradigms and practice.

Kluwer, Norwell

5. Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338–353

6. Zadeh LA (1973) Outline of a new approach to the analysis of

complex systems and decision processes. IEEE Trans Syst Man

Cybern 3: 28–44

7. Goldberg DE (1989) Genetic algorithms in search, optimization,

and machine learning. Addison-Wesley, New York

8. Holland JH (1992) Adaptation in natural and artificial systems

(The University of Michigan Press 1975). MIT, London

9. Cordón O, Gomide F, Herrera F, Hoffmann F, Magdalena L

(2004) Ten years of genetic fuzzy systems: current work and new

trends. Fuzzy Sets Syst 141(1): 5–31

10. Cordón O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic

fuzzy systems: evolutionary tuning and learning of fuzzy

knowledge bases. World Scientific, Singapore

11. Herrera F (2008) Genetic fuzzy systems: taxonomy, current

research trends and prospects. Evol Intell 1: 27–46

12. Eiben AE, Smith JE (2003) Introduction to evolutionary com-

putation. Springer, Berlin

13. Zadeh LA (1975) The concept of a linguistic variable and its

applications to approximate reasoning, parts i, ii and iii. Inf Sci

8(8 and 9):199–249, 301–357, 43–80

14. Alcalá R, Alcalá-Fdez J, Casillas J, Cordón O, Herrera F (2006)

Hybrid learning models to get the interpretability-accuracy trade-

off in fuzzy modeling. Soft Comput 10(9):717–734

15. Alcalá R, Alcalá-Fdez J, Herrera F (2007) A proposal for the

genetic lateral tuning of linguistic fuzzy systems and its inter-

action with rule selection. IEEE Trans Fuzzy Syst 15(4):616–635

16. Casillas J, Cordón O, del Jesus MJ, Herrera F (2003) Accuracy

improvements in linguistic fuzzy modeling. Springer, Berlin

17. Casillas J, Cordón O, del Jesus MJ, Herrera F (2005) Genetic

tuning of fuzzy rule deep structures preserving interpretability

and its interaction with fuzzy rule set reduction. IEEE Trans

Fuzzy Syst 13(1):13–29

18. Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy logic

controllers by genetic algorithms. Int J Approx Reason 12:299–

315

19. Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert

6(2):26–33

20. Alba E (2005) Parallel metaheuristics: a new class of algorithms.

Wiley, New York

21. Cantu-Paz E (2000) Efficient and accurate parallel genetic algo-

rithms. Kluwer, Norwell

22. de Vega FF, Cantu-Paz E (2008) Special issue on distributed

bioinspired algorithms. Soft Comput 12(12):1143–1144

23. Dowd K, Severance C (1998) High performance computing.

O’Reilly, Sebastopol

24. Spector DHM (2000) Building Linux clusters. O’Reilly,

Sebastopol

25. Sterling T, Becker DJ, Savarese DF (1999) How to build a

beowulf: a guide to the implementation and application of PC

clusters. MIT, Cambridge

26. Robles I, Alcalá R, Benı́tez JM, Herrera F (2009) Distributed

genetic tuning of fuzzy rule-based systems. In: Proceedings of the

international fuzzy systems association—European society for

fuzzy logic and technology (IFSA-EUSFLAT) congress (in press)

27. Herrera F, Lozano M (2000) Gradual distributed real-coded

genetic algorithms. IEEE Trans Evol Comput 4(1): 43–63

28. Herrera F, Martı́nez L (2000) A 2-tuple fuzzy linguistic repre-

sentation model for computing with words. IEEE Trans Fuzzy

Syst 8(6): 746–752

29. Demšar J (2006) Statistical comparisons of classifiers over mul-

tiple data sets. J Mach Learn Res 7:1–30

30. Garcı́a S, Fernández A, Luengo J, Herrera F (2009) A study of

statistical techniques and performance measures for genetics-

based machine learning: accuracy and interpretability. Soft

Comput 13(10):959–977

31. Garcı́a S, Herrera F (2008) An extension on ‘‘statistical com-

parisons of classifiers over multiple data sets’’ for all pairwise

comparisons. J Mach Learn Res 9: 2579–2596

32. Garcı́a S, Molina D, Lozano M, Herrera F (2009) A study on the

use of non-parametric tests for analyzing the evolutionary algo-

rithms’ behaviour: a case study on the CEC’2005 special session

on real parameter optimization. J Heuristics (in press). doi:

10.1007/s10732-008-9080-4

33. Bäck T, Beielstein T (1995) User’s group meeting. In: Proceed-

ings of the EuroPVM95: second European PVM, pp 277–282

34. Punch W, Goodman E, Pei M, Chai-shun L, Hovland P, Enbody

R (1993) Further research on feature selection and classification

using genetic algorithms. In: Forrest S (ed) Proceedings of the

fifth international conference on genetic algorithms, pp 557–564

35. Alba E, Dorronsoro B (2008) Cellular genetic algorithms.

Springer, Berlin

36. Alba E, Luna F, Nebro A, Troya JM (2004) Parallel heteroge-

neous genetic algorithms for continuous optimization. Parallel

Comput 30(5): 699–719

37. Lin SC, III, WFP, Goodman ED (1994) Coarse-grain parallel

genetic algorithms: categorization and new approach. In: Proceed-

ings of the sixth IEEE parallel and distributed processing, pp 28–37

38. Mülhlenbein H, Schomisch M, Born J (1991) The parallel genetic

algorithm as function optimizer. Parallel Comput 17(6): 619–632

39. Schlierkamp-Voosen D, Mülhlenbein H (1994) Strategy adapta-

tion by competing subpopulations. In: Parallel solving from

nature (PPSN III). Springer, Berlin, pp 199–208

40. Schnecke V, Vornberger O (1996) An adaptative parallel algo-

rithm for vlsi-layout optimization. In: Parallel problem solving

from nature (PPSN IV), pp 22–27

41. Tanase R (1989) Distributed genetic algorithms. In: Proceedings

of the third international conference on genetic algorithms, pp

434–439

42. Cohoon JP, Hedge S, Martin W (1987) Punctuated equilibria: a

parallel genetic algorithm. In: Proceedings of the 2nd interna-

tional conference on genetic algorithms and their applications, pp

148–154

43. Tanase R (1987) Parallel genetic algorithm for a hypercube. In:

Proceedings of the 2nd international conference on genetic

algorithms and their applications, pp 177–183

18 Evol. Intel. (2009) 2:5–19

123

http://dx.doi.org/10.1007/s10732-008-9080-4

44. Ryan C (1995) Niche and species formation in genetic algo-

rithms. In: Chambers L (ed) Practical handbook of genetic

algorithms: applications. CRC Press, Boca Raton, pp 57–74

45. Gürocak HB (1999) A genetic-algorithm-based method for tuning

fuzzy logic controllers. Fuzzy Sets Syst 108(1): 39–47

46. Mamdani EH, Assilian S (1975) An experiment in linguistic

synthesis with a fuzzy logic controller. Int J Man Mach Stud 7: 1–

13

47. Eshelman LJ (1991) The CHC adaptive search algorithm: how to

have safe search when engaging in nontraditional genetic

recombination. In: Rawlin G (ed) Foundations of genetic algo-

rithms, vol 1. Morgan Kaufman, pp 265–283

48. Eshelman L, Schaffer J (1993) Real-coded genetic algorithms and

interval-schemata. Found Genet algorithm 2:187–202

49. Kröger B, Schwenderling P, Vornberger O (1993) Parallel

genetic packing on transputers. Parallel genetic algorithms: the-

ory and applications, pp 151–186

50. Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus M, Ventura S,

Garrell J, Otero J, Romero C, Bacardit J, Rivas V, Fernández J,

Herrera F (2009) KEEL: a software tool to assess evolutionary

algorithms to data mining problems. Soft Comput 13(3): 307–318

51. Wang LX, Mendel JM (1992) Generating fuzzy rules by learning

from examples. IEEE Trans Syst Man Cybern 22(6): 1414–1427

52. Sheskin D (2003) Handbook of parametric and nonparametric

statistical procedures. Chapman & Hall/CRC, Boca Raton

53. Wilcoxon F (1945) Individual comparisons by ranking methods.

Biometrics 1:80–83

54. Zar J (1999) Biostatistical analysis. Prentice-Hall, Upper Saddle

River

Evol. Intel. (2009) 2:5–19 19

123

	Evolutionary parallel and gradually distributed lateral tuning�of fuzzy rule-based systems
	Abstract
	Introduction
	Preliminaries: basic concepts about DGAs
	Taxonomy of distributed genetic algorithms
	Design of distributed genetic algorithms

	Genetic tuning of FRBSs: a particular case on the effective lateral tuning of MFs
	Rules with the linguistic 2-tuples representation
	Lateral tuning of FRBSs
	Data base codification and initial population
	Fitness function
	Crossover operator
	Restarting process

	A distributed genetic algorithm for the lateral tuning of FRBSs
	Main components of the DGA
	Common components of individual subpopulations

	Experiments
	Experimental set-up
	Performance analysis
	Convergence study and trend of both algorithms
	Speed-up study

	Concluding remarks
	Acknowledgments
	Appendix: Wilcoxon’s Signed-Rank Test
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

